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Tensor product of the octonionic Hilbert spaces and colour 
confinement 

J Rembielinski 
Institute of Physics, University of Lodz, Lodz, Narutowicza 68, Poland 

Received 11 October 1977, in final form 3 April 1978 

Abstract. The definition of the tensor product of the octonionic Hilbert spaces with 
complex geometry is proposed. This definition is  based on the isomorphism (geometric and 
algebraic) of the octonionic Hilbert space with appropriate structure. I t  is found that the 
algebraic colour confinement holds only partially. In so called essentially octonionic 
theories the algebraic cor.finement of colour holds for all boson states. 

1. Introduction 

A theoretical description of the leptons and the quark structure of hadrons has been 
proposed by Giinaydin and Gursey (1973, 1974), Giirsey (1976), Giirsey eta1 (1976), 
Giirsey and Sikivie (1975), (see also Bucella et a1 1977) in the context of octonionic 
quantum mechanics. Earlier Pais (1961) (see also Tiomno 1963) had emphasised the 
applicability of the octonionic algebra to the classification of the elementary particles. 
The structure and properties of the Hilbert spaces defined over a non-associative 
Cayley algebra has been investigated by Goldstine and Horwitz (1964, 1966) and 
Horwitz and Biedenharn (1965). i n  the works of Giinaydin and Giirsey the spaces of 
one, two and three particle states were considered using the octonionic Hilbert space 
(OHS) with complex scalar product. However a systematic description of the multi- 
particle states is still lacking. In this work we propose the definition of the tensor 
product of OHS which preserves the octonionic structure, In order to do this we first 
show that the OHS with complex geometry is isomorphic to the complex Hilbert space 
(CHS) with appropriate structure. Using this isomorphism we find that the structure of 
the OHS is essentially determined by the representations 1, 4 and 4 of the group 
U(4), 1 SU(3),. The construction of the multilinear tensor product is based on this 
fact. The results obtained suggest that in general colour confinement cannot have an 
algebraic origin. Howeber in the cases when the quark representation of the symmetry 
group G subduced to U(4), contains only the representations 4 and 4 of U(4), the 
complete algebraic confinement of the colour for the boson states holds. 

2. Octonionic Hilbert space with complex geometry 

In this section we give a short review of the OHS formalism and show the isomorphism 
between OHS with complex geometry and CHS. In the following we use a real octonion 
basis {eA} with the multiplication rules eOeA = eAeO = e A  for A = 0, 1 ,2 ,  . . . , 7 and 
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eAeB = -eosAB +ZABCec for A,  B, c = 1, 2 ,  . . . , 7 where Z i j k  = Eijk ,  Z7,&,&+3 = 1 for 
i, k, j = 1 , 2 , 3  and Z A B C  = -CECA = -ZCBA.  The elements 

A = e A a A = e o a o + e l a l +  . . . fe7a7=eoao+eaa, ,  

A = 0 , 1 ,  . . . ,  7, a = l ,  . . . ,  7 

of the real octonion algebra W can be represented in complex form 

A = erAr = eoAo + EA, = 0 ,  1 , 2 ,  3 

where the coefficients A .  = eoao+ e7a7, Ak = eoak - e7ak+3 belong to the subset 
C(eo ,  e 7 ) c  W isomorphic to the field of the complex numbers. The octonionic algebra 
is non-associative but the multiplication of the octonions by complex numbers is 
associative i.e. if a, P E C then a(PA)= (@)A,  (aA)P = a(AP) for all elements A of 
W. This fact is critical for the geometry of the OHS. In W we can define octonionic, 
quaternionic and complex conjugation by 

A = eOaO - eaua = eoA: - EA, 
A = eOaO - ekak - e k + 3 a ~ + 3  + e7a7 = eoAo - EA 

A *  = eOaO + ekak - ek+3ak+3 - e7a7 = eoA$ +EA* 
and 

respectively. Note that only octonionic and complex conjugations are the automor- 
phisms of W. As is well known there are four bilinear forms over W which define the 
norm [AI= (aAaA)l’* = (A.AE)1’2 with property IABI = /AI.  IBI (see for example 
Giinaydin 1976). In the following we use the complex scalar product defined by 

(A ,  B )  =;[AB +(E$] = AEB,. 

Note that this scalar product is invariant under transformations of the U(4) group. The 
properties of the complex scalar product are listed in the appendix. 

The notion of the OHS with complex geometry can be introduced by little 
modification of the postulates given by Goldstine and Horwitz (1964). 

Postulate 1 (algebraic) 

X is a linear vector space over octonions (we adopt a right-handed multiplication 
convention-for details see appendix). Note that we demand associativity for complex 
numbers and only power associativity for other scalars. 

Postulate 2 (geometric) 

There exists an inner product (f, g) defined for all f, g in with values in C such that 
( a )  ( f , g + h ) = ( f , g ) + ( f , h )  
( b  1 (f, g )* = (g7 f )  
( c )  ( f , fA)= i (A+A) l f I2  

( d )  (f, a g )  = a*(f, g )  
These relations imply other useful rules listed in the appendix, in particular the 
Schwartz inequality holds, 

where I f l ’  = (f, f )  2 0 and I f 1  = 0 is equivalent to f = 0 
for a E C. 
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Postulate 3 (topological) 

X is complete and separable. 

form (in complex notation) 
From the above postulates it follows that the vector f~ X can be represented in the 

f = e,f, (1) 

or in Dirac formalism by If) = e,lf,), where f, = (e,, f )  E C. The scalar product has the 
form 

where (f,, g , )  is the standard complex Hilbert space scalar product. Defining the bra 
vectors by 

we can write the scalar product in the form 

(L g ) =  (fig) = c ( f ,  I g , ) .  , (3) 

The closed subset of X, containing together with the vectors f, g all their linear 
combinations with complex coefficients, will be called the linear manifold. In particular 
OHS is the direct sum of four orthogonal linear manifolds generated by e,. The 
projectors on the manifolds have standard properties but in general do not commute 
with multiplication by octonions. This follows from the fact that linear manifolds are in 
general not closed under multiplication by octonions. 

As in the standard (CHS) case nf = I f ) ( f l  is the projection operator on the manifold 
generated by I f )  ( I f  = 1). The associativity for complex numbers implies that 

( f l d = C  U ((f la)(aI)lg)=C U ( f l ( l 4 ( . I g ) ) = C  U ( ( f la ) ) ( (a lg) ) .  (4 1 

The linear operator L is C-linear mapping of the manifold M c X into X. It follows 
from the associativity of the complex numbers that the operator L can be represented in 
the orthonormal basis by 

i.e. 

where L,, = ( a 1 L l P ) ~  C (note that in general Ia)La.p(PI ZL,,Ia)(PI or Ia)(PIL,@). 
Moreover the composition law for linear operators L and N has the standard form 

NLlf) = c I P ) N P V L Y P ( 4 f )  
PBY 

i.e. 

The hermitian and unitary operators can be defined as usual and are represented by 
hermitian and unitary complex matrices respectively. The projectors on manifolds are 
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hermitian. Note that the hermitian conjugation is not an automorphism of W (but is the 
automorphism of C) contrary to the standard (complex) case. It is easy to see that if we 
restrict ourselves to the multiplication of vectors by the elements of C then the 
geometrical structure of OHS introduced above is isomorphic to the structure of 
appropriate CHS: with every vector If) = e* if*) E OHS we associate the complex vector 

i fo\  

with scalar product 

( f l  g> = (f, = c ( f P  g,). 
w 

Similarly, to every linear operator L in OHS there corresponds a linear operator in 
C H S  via relations ( 5 )  and (6). The eo and e7 are implemented by 1 and i = a respec- 
tively. 

Now we show that the CHS mentioned above can be equipped with the 
algebraic structure of OHS. Let us consider the Cayley group with elements defined by 
relations E,,,, ,nlf)z (I f)e,,) . . . )ea,)eml, If Q is the operator of quaternionic con- 
jugation, i.e. Q [ f ) =  I f )  r- e o l f o ) - t l f )  then the following relations hold: 

E -  k - - 1 2ekllE123Ellr k ,  i, j = 1, 2, 3 - (7a)  
Ek+3/f) = I f ) ( w k > =  -+( I f ) ek>+{e7 ,  I f ) k k  = - ( 1 f ) e k > e 7  + ( F k ) e k  + ( 1 f ) e 7 > e k  

i.e 

Ek+3 = (Ek + {Q, Ek))E7 = -QEkQE7 (7b) 

Ea,,, an =Ea,Eq . . Ean. (7c) 

From equations (7a, b, c )  it is evident that the whole Cayley group is generated by 
Eo = I ,  E7, E1237 Elk (i, k = 1 ,  2, 3) and Q only. 

The multiplication by (eAcB) is represented by 

(El X Ek )If) I f ) (e lek  ) = E,klEI 1 f )  (Sa) 

(Ek Ek > I f )  I f > ( e k e k  = -Eo1 f) @ b )  

(E7 x Ek )I f )  I f ) @ k  ) = Ek +31 f) (8c 1 
(Ea X Ea )I f) E EA I f )  ( 8 4  

i, k = 1 , 2 , 3  

where A = 0, 1 , 2 , .  . . , 7 .  The formulae for other products can be obtained from 
equations (Sa, b, c, d )  and the  octonionic multiplication table. From the properties of 
the octonion algebra and the complex scalar product we obtain useful relations for E7, 
Eizs, Elk and Q: 

ik  k i  - ik Ik, i f k, E123 = E231 = -E2133 E:23 = I ,  E = - E  -.-E-' = - E i  

(E1z3f9 g ) =  ( f ,  E123g)*&, 

[E7, E,k] = 0 ,  

E7 = -E;' = -E; ,  

{E7, E I D }  = 0 ,  

Q = Q'= Q-' ,  

[E7, Q ]  = 0. 
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The correspondence between OHS and CHS implies that the Eo, E7,  Eik and 
represented as follows 

are 

r l  o o 01 

Lo 0 0 -11 

0 0  0 1  0 1 0  
E n = [  0 0 - 1 0  o], EX-[’ 0 0 0 - 1 ’  

- 1 0  0 0  0 0 1  

r o  o 1 0 1  
0 0 1  

0 - 1 0 0  
0 0 o] 

On the other hand the acts as the complex conjugation of the vector 

Thus the OHS is isomorphic (algebraically and geometrically) to the CHS defined above. 
Now let us explain the role of the U(4) group in the structure of the OHS. As is well 
known the octonion algebra admits GZ as the group of automorphisms. On the other 
hand the scalar product in OHS is invariant under U(4) ‘gauge’ group. The intersection 
of these groups is G2 fl U(4)- SU(3). The action of this common subgroup leaves the 
algebraic and geometric structure of OHS unaffected; in papers by Giinaydin and 
Gursey (1973,1974,1976) GZ n U(4) is identified with the SU(3), colour group. The f o  
and f k  form the colour singlet and triplet respectively. 

Now we make an important remark. The algebraic closure (under matrix multi- 
plication) of the unitary, unimodular 4 X 4 matrices &, E7 and the matrices of the 
representation 1 0 3 of the colour SU(3), group forms the self-representation 4 of the 
SU(4)group. Furthermore the unitary matrix Q (det Q = -1) extends this group to the 
subgroup of the U(4) ‘gauge’ group with (det U)’ = 1. This group will be denoted by 
U(4),. From the above it follows that the algebraic structure of the OHS is essentially 
determined by four-dimensional self-representation 4 of the U(4), group (and in fact its 
adjoint 3 since E123: 4+4) because: ( a )  it contains the intrinsic symmetry group 
SU(3),; ( b )  the Eik, E7 and Q, which belong to the U(4),, together with the operator of 
complex conjugation generate the Cayley group via equations (7), (8) and (9). 

3. Tensor product of the octonionic Hilbert spaces 

In the preceding section it was shown that the OHS is isomorphic to the CHS carrying the 
self-representation of the group U(4),. In this CHS the octonionic structure is 
represented by appropriately defined operations. This result allows us to define in a 
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consistent manner the tensor product of the OHS. It is natural to demand that the 
resulting Hilbert space has a similar structure, i.e. is the carrier space for simultaneously 
irreducible representations of the U(4), and Cayley groups with a common subgroup 
containing the elements E+., €7 and Q. It is not difficult to show that this condition is 
fulfilled for scalar (1) and self-representations (4,3) of the group U(4), only. For 
example in the product of even number of 4 , 4  the Eo and -Eo are represented by +I 
and consequently the Cayley representation group is one-dimensional (Goldstine et a1 
1964). Thus U(4), acts in this case trivially; this holds only for some even products like 
403=u@ 1, 4 0 4 0 4 0 4 = 3 . 4 5 0 3 5 0 2 . 2 0 0 3 . 1 5 0  1 etc. The above 
considerations suggest the following form for the definition of the tensor product: 

X x X x . . . x X = n (R 0 R 0 . . . 0 X) (10) 
where n projects on the whole subspace of the representation (0 1) 0 (04) 0 ( 0 4 )  
and 0 denotes the standard tensor product. 

Thus % x  . . , x R= (0%") 0 (0@) 0 (@e-) where 2@ and 9'8 are the CHS 
defined above while the XI is U(4), scalar. The action of the Cayley group in Xi is 
defined by homomorphism *EO, *E7 + I ,  *E&, + operator of the complex 
conjugation. Note that our definition of the tensor product is almost analogous 
to the symmetrisation or antisymmetrisation of the multiparticle boson or fermion 
states respectively. However there is a very important difference because the 
octonionic tensor product of some number of one-particle OHS cannot be 
obtained starting from one copy and multiplying successively by others. For example 
R 4 x  X4x X4= X4 # X 4 x  ( R 4 x  X4)= 0 II(4 0 4 0 4 ) =  II(3-20O {)= 4 
whereas II(4 0 II(4 0 4)) = 0. 

Let us consider the case when the theory based on OHS formalism possess the 
symmetry group G. Then G must necessarily contain U(4), as the subgroup. The 
foregoing discussion implies that the only admissible representations D of G fulfil the 
condition 

because 

D(G)L U(4), = (0 1) 0 (04) 0 (04). 

XI x R2 x . . . x X" = rI(R10 X* 0. . . 0 2"). 

(11)  

(12) 

Consequently the definition of tensor product should be generalised as follows 

Here the Xk's are the carrier spaces of the admissible (in the sense of equation (11)) 
representations of G. The operator n projects the standard tensor product of Rk's on 
the whole subspace of the admissible representations of G. The definition (12) implies 
strong selection rules on the acceptable multiplets of G. 

If the (faithful) admissible representations of G are such that subduced to the U(4), 
contain the 4 and 4 only, the resulting theory will be called essentially octonionic. Note 
that in the essentially octonionic theories the algebraic colour confinement for the 
boson states holds. In fact the octonionic tensor product of an even number of the 
admissible representations (associated with quarks) is the U(4), singlet (or equals zero). 

We wish now to discuss the field concept in this framework. As usual the field @ is an 
operator valued tempered distribution acting in OHS and its domain is a linear manifold 
dense in OHS. It can be represented by @ ( x ) = e r Q r ( x )  or equivalently by 
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The vacuum 10) belongs to the 2'. Note that in general we can generate from the 
vacuum the vectors belonging rather to the standard tensor product of one-particle 
states. For this reason it is desirable to define the product of the field operators by 

@ x @ x . .  . x@=r I (@@@@. * .@a)). (13) 

Then the vectors ( ( 3 x 0  X . . . X@)lO) belong to the octonionic tensor product of 
one-particle states. However no set of commutation rules for the field operators can be 
found which allows us to obtain the above vectors and only those, by successive action of 
the field operators on vacuum. 

Now we give some examples illustrating the above formalism. 

Example 1 .  Let us consider the fictitious theory based on the group O(7) 3 U(4),. From 
equation (1 1)  it follows that the only admissible representations of 0 ( 7 )  are scalar 1 and 
spinor S .  The U(4), content of the eight-dimensional spinor representation of 0 ( 7 )  is 
given by 

8=404. 
Therefore the theory based on O(7) is essentially octonionic. If we associate the quarks 
with representation 8 then the boson states are colour and O(7) singlets. On the other 
hand the fermions can occur in octets only. 

Example 2.  Let G = U(4), x GF be the symmetry group of the theory. The admissible 
representations of G have the form (4, OF), (4, DF), (1, DF)  where DF denotes an 
arbitrary representation of GF. If the quarks are identified with the representation 
(+,a) where 9 is the fundamental representation of GF then the resulting theory will 
be essentially octonionic. Consequently the boson states are colour singlets (but in 
general not the singlets of G). Note that the diquark states do not exist because 
4 x 4 = rI(4 0 4)=  0.  

A natural question arises as to how our formalism is connected with the coloured 
quarks scheme of Gunaydin and Gursey (1973). It is easy to see that their model can be 
obtained (in the framework of example 2) by breaking the U(4), group down to SU(3), 
by the condition qo = 0. Here q r ( x ) ,  CL = 0, 1 ,  2 , 3 ,  denotes the quark field (the flavour 
indices are omitted). However, as it follows from our considerations, the conclusion of 
Gunaydin and Gursey that their scheme is a realisation of the proposal of Gell-Mann 
(1972) with natural algebraic confinement of quarks, is false (see also below). 

4. Conclusions 

We start from a review of the arguments given by Gunaydin and Gursey (1974, 1976). 
First we note that there is no mixing between colour singlets and triplets because the 

SU(3), symmetry is exact. Therefore the physical superposition of the physical states in 
OHS has the C-number coefficients (the superposition with octonionic coefficients 
mixes, in general, singlets and triplets). So every subset of physical states generates the 
linear manifold of physical states in OHS, i.e. the superposition principle does not 
conflict with the geometry of OHS. Concluding the Birkhoff-von Neumann pro- 
positional calculus remains unaffected. Our results contradict the claim by Gunaydin 
and Gursey that the colour subspace in OHS is confined. Their arguments are based on 
the statement that the Birkhoff-von Neumann propositional calculus cannot be realised 
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in whole OHS and there is no satisfactory way of defining tensor product states. This is 
true in cases of the OHS with octonionic or  quaternionic geometry. However the above 
considerations show that it is false in case of the OHS with complex geometry. 

Let us summarise the results. 
(1) The  quantum theory based on the OHS with complex geometry can be treated as 

the standard quantum theory with appropriate structure and selection rules. 
(2) The  algebraic colour confinement can hold for the boson states in essentially 

octonionic theories. For fermions the confinement, if it exists, is of dynamical nature. 
(3) The  examples given in $ 3 indicate that there are very strong restrictions on the 

admissible multiquark states. 
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Appendix 1. The properties of the complex scalar product in the octonion algebra 
W ( A , B E  W , c u , / . ? ~ C c  W) 

Appendix 2. The algebraic postulate of the OHS 

(1) R is an additive abelian group. 
(2) The  mapping R x  W + 2't is defined which satisfies (f, g E 2, A ,  B E W, a,  p E 

cc W )  
( a )  distributive laws 

( f + g ) A  = f A + g A  
f ( A  + B )  = f A  +fB 

( b )  associativity for complex numbers 

(fa )P -- f ( 4  1 
(c) power associativity 

( fA)A =fA2 

(fi4)A-' = f 

( d )  f. 1 =f. 
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Appendix 3. The properties of the scalar product in the OHS 
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